Biological systems; biofluids
Ozturk, M., O’Rear, E.A., and D.V. Papavassiliou., “An approach to assessing turbulent flow damage to blood in medical devices.,” ASME Journal of Biomechanical Engineering, 139(1), Art. 011008 (8 pages), 2017; DOI: 10.1115/1.4034992
Alam, T., Pham, Q.L., Sikavitsas, V.I., Papavassiliou, D.V., Shambaugh, R.L. and R. Voronov, “Image-based modeling: A novel tool for realistic simulations of artificial bone cultures,” Technology, 4(4), 2016; DOI:10.1142/S233954781620003X
McIntosh, W.H., Ozturk, M., Down, L.A., Papavassiliou, D.V., and E.A.O’Rear, “Hemodynamics of the renal artery ostia with implications for its structural development and efficiency of flow”, Biorheology, 52(4), 257-268, 2015; DOI: 10.3233/BIR-15069.
Ozturk, M.,O’Rear, E.A., and D.V. Papavassiliou, “Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations,” Artificial Organs, 39(12), E213-E226, 2015; DOI: 10.1111/aor.12572
Down, L.A., Papavassiliou, D.V., and E. O’Rear, “A fluid structure interaction investigation of arterial occlusions caused by renal artery aneurysms,” Biorheology, 50(1-2), 17-31, 2013; DOI: 10.3233/BIR-130623
Voronov, R.S., VanGordon, S., Sikavitsas, V.I., R.L. Shambaugh and D.V. Papavassiliou, “3D Histology of Tissue Engineered Constructs via High Resolution Microcomputer Tomography Without X-Ray Contrast,” Tissue Engineering, Part C, 19(5), 1-9, 2013; DOI: 10.1089/ten.tec.2011.0612
Pham, N.H., Voronov, R.S., VanGordon, S., Sikavitsas, V.I., and D.V. Papavassiliou, “Predicting the stress distribution within scaffolds with ordered architecture,” Biorheology, 49, 235-247, 2012; DOI: 10.3233/BIR-2012-0613 (Cover page)
Down, L.A., Papavassiliou, D.V., and E.A. O’Rear, “Significance of Extensional Stresses to Red Blood Cell Lysis in a Shearing Flow,” Annals of Biomedical Engineering, 39(6), 1632-1642, 2011; DOI: 10.1007/s10439-011-0262-0
VanGordon, S., Voronov, R.S., Blue, T.B., Shambaugh, R.L., Papavassiliou, D.V., and V.I. Sikavitsas, “Effects of scaffold architecture on preosteoblastic cultures under continuous fluid shear,” Ind. Eng. Chem. Res., 50(2), 620-629, 2011; DOI: 10.1021/ie902041v
Voronov, R., VanGordon, S., Sikavitsas, V.I., and D.V. Papavassiliou, “Local velocity and stress fields within 3D porous scaffolds used in perfusion bioreactors for bone tissue growth,” J. of Biomechanics, 43, 1279-1286, 2010; DOI: 10.1016/j.jbiomech.2010.01.007
Heflin, L., Street, C., Papavassiliou, D.V., and E. O’Rear, “A Computational Investigation of the Geometric Factors Influencing the Severity of Renal Arterial Stenoses,” J. of Biorheology,23(2), 2009, DOI: 10.1007/s12573-010-0016-x
Heflin, L.A., Street, C.B., Papavassiliou, D.V., Kem, D.C., Wu, D., and E.A. O’Rear, “Transient stenotic-like occlusions as a possible mechanism for renovascular hypertension due to aneurysm,” J. American Society of Hypertension, 3(3), 192-200, 2009.
Nguyen, K.T., Clark, C.D., Chancellor, T.J., and D.V. Papavassiliou, “Carotid geometry effects on blood flow and on risk for vascular disease,” Journal of Biomechanics, 41, 11-19, 2008.